Economic Impacts of Recreational Boat Fishing In the Houston-Galveston Area of the Texas Coast

AOBERT B. DITTON, ALAN R. GRAEFE and GAPY LAPOTKA

Texas Agrtculturad Experiment Station
Fecreation and Parks Department
\square

ECONOMIC IMPACTS OF RECREATIONAL BOAT FISHING

IN THE HOUSTON-GALVESTON AREA OF THE TEXAS COAST

by

Robert B. Ditto, Alan R. Graefe and Gary Lapotka

Texas Agricultural Experiment Station Recreation and Parks Department

Texas AdM University System College Station, Texas

September 1980
NATIONAl SPA GRANT DFODSTORY

 fin
TAMU-SG-80-206

Partially Supported through Institutional Grant 04-8-M01-169 to Texas A\&M University
by the National Oceanic and Atmospheric
Administration's Office of Sea Grants
Department of Commerce
$\$ 2.00$
Order from:

Sea Grant College Program
Texas A\&M University College Station, Texas 77843

ABSTRACT

The saltwater fishing patterns and economic impacts generated by recreational boat fishermen in the Houston-Galveston area of the Texas coast were investigated. Data were obtained chrough a mail survey of registered boat owners residing in an eight-county area surrounding Galveston Bay.

About 31 percent of the boats in the study area were used for saltwater fishing in Galveston Bay or adjacent off shore waters during 1978. Saltwater boat fisheraen spent more than 31 million dollars for their fishing trips in 1978, with bay fishermen spending $\$ 26,460,000$ and offshore fishermen spending $\$ 5,046,000$. Non-local bay fishermen spent $\$ 7,439,000$ in bayshore communitles and non-local offshore fishermen spent $\$ 1,970,000$ in coastal communities. The economic impact of saltwater boat fishing trips in the region was $\$ 79,751,000$.

Since this study does not present the total economic influence of saltwater boat fishing in the study region, some factors which should be considered when assessing the values and benefits of saltwater boat fishing are discussed.

This research was funded by the Texas Agricultural Experiment Station and the Sea Grant College Program at Texas AsM University. A sincere thanks is given to the many individuals that aided in the completion of this effort. The following persons were of particular assistance to us: Trisha Bednarz, Tony Fedler, Fred Jankowiak, Marc Macintire, Margaret O^{\prime} Reilly, Terrell Rooks, John Schwartz, Malon Scogin and Al Zapata of the Texas A\&M Department of Recreation and Parks; David Kent of the Texas A\&M Department of Management and Bill Anderson of the Texas Parks and Wildlife Department.

Apprectation is extended to the referees for their valuable critique, to Dr. Gisela Mahoney of the Sea Grant Program for technical editing, to Beth Breuker for her graphics and to Vicky Conway and Laura Pendleton for typing the manuscript.

TABLE OF CONTENTS

Page
ABSTRACT iii
ACKNOWLEDGEMENTS iv
LIST OF TABLES vi
LIST OF FIGURES vit
INTRODUCTION 1
Objectives 4
METHODS 7
Study Area 7
Sampling Design 9
Data Collection 9
The Problem of Non-response 10
Calculation of Population Estimates 13
RESULTS 15
Saltwater Fishtng Patterns 15
\checkmark Boat Fishermen Expenditures 20
V. Impacts to Local Areas 26

- Total Contributions to State and Regional Economies 30
CONCLUSIONS AND IMPLICATIONS 35
REFERENCES 41
APPENDIX: Annual Expenditures for Durable Fishing Equipment 45

LIST OF TABLES

Table Page
1 Survey Questionnaire Response 11
2 Saltwater Boat Fishing Participation by Survey Respondents and Non-respondents 12
3 Number of Boats in the Population Used
for Various Types of Saltwater Fishing 15
4 Seasonality of Saltwater Boat Fishing 17
5 Frequency of Partictpation in Saltwater
Boat Fishing 18
6 Other Types of Fishing Participated in by Saltwater Boat Fishermen 18
7 Saltwater Boat Fishing Party Size 19
8 Duration of Saltwater Boat Fishing Days 20
9 Daily Expenditure Patterns for Saltwater
Boat Fishermen 24
10 Total Expenditures, by Categories, for Bay \& Offshore Fishing (In Thousands of Dollars) 26
11 Total Daily Expenditures for Saltwater
Boat Fishing by Locan and Non-local Residents (In Thousands of Dollars) 28
12 Location of Total Daily Expenditures for Saltwater Boat Fishing by Non-local Residents
(In Thousands of Dollars) 29
13 Total Regional Economic Impact of Fishing Trip Expenditures (In Thousands of Dollars) 33
14 Total State Economic Impact of Fishing Trip Expenditures (In Thousands of Dollars 34
15 Average Annual Expenditures, by Type of Fishermen, for Major Equipment Items 45
16 Total Annual Expenditures, by Type of Fisher- men, for Major Equipment Items (In Thousands of Doilars) 46

LIST OF FIGURES

Figure Page1 Map of the Eight-County Study Area 82 Map of the Galveston Bay System 163 Average Dafly Party Expenditures for Saltwater
Boat Fishing Trips . 23

Assessing the values of varied uses of marine fisheries is one of the most difficult tasks confronting resource managers. Historically, emphasis has been placed on the commercial uses of fisheries. As a consequence, most of the available data concerning the economic frapact of marine fisheries utilization pertain to commercial fishing. In recent years, however, marine recreational fishing has begun to receive increased recognition in fisheries decision-making. In Texas, this is evidenced by the increased amount of time and resources dedicated to creel census and harvest studies (Heffernan et al., 1975; Breuer et al., 1977) and by changes in fishing regulations such as the passage of the Red Drum Conservation Act (Texas Session Laws, Chapter 270, 65th Legislature, 1977-78). Some of this new emphasis is based upon the realization that recreational fishing results in significant direct and indirect contributions to regional and local economies.

Recreational uses of marine fisheries are associated with two important types of economic benefits. The first type of economic benefit is received by the participants in the recreational activity. This Includes the utility and satisfaction derived from the fishing experience. Anglers' willingness to pay for such experiences is taken as a measure of the economic value of the fishery for recreational fishing. However, true markets do not exist for publicly owned goods such as marine fisheries. Therefore, researchers have had to rely on techniques which simulate market condtions to measure the economic value of recreational uses of fisheries (North, 1976).

The second type of economic benefit includes the comercial impacts
which result from expenditures made by recreational fishermen. Such expenditures become income to the suppliers of goods and services which support the marine recreational fishing industry. In particular, bait shops, marinas, fishing equipment stores, and boat dealers all derive income from recreational fishermen. In addition, food stores, gasoline distributors, restaurants, and the motel industry are examples of the tany ancillary businesses which benefit from fishing related expendiEures. In fact, many localities rely heavily on recreational fishing as a means of economic support for their community. Moreover, initial expenditures for fishing-related goods and services generate additional spending which further contributes to the overall economic development of the region. This report is concerned with this second type of economic benefit.

Many studies have shown that saltwater fishermen's expenditures contribute to local economies by stimulating additional employment, providing increased incomes, and generating further output and sales. For example, a study in Hawali revealed that the economic impact of marine sport fishing to the state was around 11.5 million dollars in increased incomes over a two-year period (Hoffman and Yamauch1, 1973). Equipment and transportation costs accounted for four-fifths of the impacts. In another study of marine sport fishing on the Mississippi Gulf coast it was found that the average fisherman contributed about $\$ 22.00$ in expenditures to the local areas (Daniel, 1974). However, since toost of the fishermen were local residents, little new money was spent in local areas for recreational fishing. The highest daily expenses were for bait, tackle, and food. An ongoing study of marine
sport fishing in Rhode Island estimated that the cost of a day's fishing, in terms of dafly expenditures, was $\$ 11.11$ for out-of-state and $\$ 2.81$ for in-state anglers (McConnell and Smith, 1978) . A study of recreational fishing in the San Antonio-Lavaca Bay area sponsored by the Texas Water Development Board showed that daily expenditures were $\$ 6.24$ per person, resulting in a total economic impact of $\$ 2,218,796$ in 1973 (Threadgill, 1974). The 1970 National Survey of Fishing and Hunting estimated that each man-day of saltwater fishing on the Texas Gulf coast cost $\$ 11.36$ in gross expenditures. The study further reported that total marine recreational fishing expenditures along the U.S. Gulf coast amounted to $\$ 405.65 \mathrm{million}$ dollars (U.S. Department of Interior, 1972). Finally, a study of charter fishing on the Texas Gulf coast revealed that charter fishermen spent approximately $\$ 4,209,058$ in coastal communties during 1975. This resulted in a total contribution of $\$ 13,767,169$ to the state economy (Ditton et al., 1977).

Until recently, fisheries managers have focused most heavily on the biological aspects of fisheries. However, several pieces of legislation at the federal level (Fisheries Conservation and Management Act of 1976 and the Coastal Zone Management Act of 1972) have mandated a broadened approach to f isheries menagement, which has led managers and other resource decisionmakers to pay increased attention to social, economic and political considerations. In Texas, there have been only a few studies that have focused on fishermen's expenditures. In particular, detailed state or regional expenditure data related to saltwater fishing have been conspicuously lacking. Hence, coastal decisionmaking has had to rely mostly on crude estimates of the commercial value
of recreational fishing. As a result, marine recreational fishing has been an under-recognized component in the econony of the state and coastal communties. In recent times, several organizations, most notably the Gulf Coast Conservation Association, have called for studies of the economic values of recreational fisheries in Texas.

A long-term sport-fishing research program was initlated at Texas AsM University in 1974 with a program statement proposed by Ditton and Jarman. The ultimate goal of the program is the attainment of predictive understanding of the nature and extent of sport fishing behavior and related expenditures in the Texas coastal zone. The 1974 program statement recognized the complexity of sport fishing and the concomitant necessity to limit the scope of any individual study. Subsequently, several components of Texas coastal fising activity have been investigated (Graefe and Ditton, 1976; Ditton et al., $1978^{\text {a }}$; Ditton et al., 1978 ${ }^{\text {b }}$; Woods, 1977). Several major fishing sectors, including boat fishing, pler fishing and surf fishing remain to be studied.

This study will examine one of the most significant components of saltwater fishing: bay and gulf private boat fishing. To most effectively meet the information needs of resource managers at various levels of goverment, the study will focus on a particular region, the HoustonGalveston area, to:

1) Identify patterns of saltwater fishing participation by a regional population of registered boat owners.
2) Identify the expenditure patterns of boat fishermen and their
effects on the state, regional, and local economies, with special attention paid to differences between bay and offshore fishermen and to whether expenditures were made in the home or destination community.
3) illustrate the complexities involved in estimating the "total economic impact" of sport fishing in any particular region.

Since many previous studies have emphasized total impact figures, with Ifttle attention to the underlytng, often unstated, assumptions needed to reach such figures, emphasis was given to better understanding the component variables in an economic impact analysis. It was recognized that some types of expenditures can be attributed directiy to fishing, while other types of variables present problems to the analyst because they can only be partially attributed. Because of these allocation difficulties, conservative total impact figures are derived from fishing trip expenditures only. Additional data are provided relative to other expenditures which can be partially attributed to saltwater boat fishing according to some set of assumptions. Those resource managers who are interested in more comprehensive economic impact figures can use the data presented in this report to test their assumptions and to calculate the "total economic impact."

To meet the objectives of the study, a survey of a regional population of boatowners was conducted. An eight-county area surrounding Galveston Bay was selected as the study area (Figure 1). This area is one of the major fishing and boating areas in the State of Texas. The total number of fishing licenses and boat registrations for the eightcounty area account for about 20% of the state totals. In addition, the population of these counties has been growing at a rate greater than double the statewide rate of population growth, so it is likely that this region will continue to grow in importance as a Texas boating and fishing center (Skrabanek and Upham, 1974).

A 1975 Texas Parks and Wildlife Department survey of finfish harvest In Galveston Bay indicated that over 90% of all Bay anglers come from Harris, Galveston, Chambers, and Brazoria countles, all of which border Galveston Bay (Heffernan et al., 1975). A second tier of counties, including Fort Bend, Liberty, Montgomery, and Waller, was added to the previous four counties adjacent to Galveston Bay to form the study area for this survey. Therefore it is probable that nearly all private boat fishing use of Galveston Bay and adjacent offshore waters is done by residents of the study area. It is important to recognize that the focus of this study is on fishing participation and associated expenditures by people residing within the eight-county study area, not on total fishing use of Galveston Bay and adjacent offshore waters. Some additional fishing in this area is contributed by private boat fishemen

FIGURE 1: MAP OF THE EIGHT COUNTY STUDY AREA

entering from outside of the study area, but as indicated above, this Is a very small portion of total use.

Sampling Design

The Texas boat registration file, maintained by the Texas Parks and Wildife Department (TPWD), provided access to the population of boatowners residing within the study area. There were 119,802 registered pleasure boats in the eight-county area as of Decembex 31, 1978. A previous survey conducted in the same study area found that about onethird of the registered boats are used for saltwater fishing (Ditton and Graefe, 1978). Based on this information it was detemined that a sample size of 2,000 was sufficient to provide accurate representation of the full population. The number of boats needed from each of the eight counties to provide this sample size was calculated in proportion to the number of boat registrations in each county. The specified number of entries from each county was then selected using systematic sampling with a random start.

Data Collection

The owner of each boat selected in the sample was mailed a survey questionnaire in April 1979. Survey materials sent included the questionnaire, a cover letter and a business reply, postage-paid return envelope. A post card reminder and second questionnaire were mailed to sample members who had not responded after intervals of 10 and 21 days, respectively. All survey materials were sent via first class mall.

The survey questionnaire asked respondents to estimate how of ten
they had used their boat (the specific boat selected in the sample) to do a variety of types of fishing and other boating activities during the previous year. It was felt that a one-year study period was a reasonable length of time for which respondents could remember their general extent of fishing activity. The questionnaire did not ask respondents to recall exact dates or places of fishing and therefore avoided some of the "recall problems" that have hampered many previous fishing surveys (Hlett and Worrall, 1977). The survey questionnaire also obtained a record of typical fishing trip expenditures for saltwater boat fishing during the study year.

Table 1 summarizes the survey response rates. The total usable response rate was 58.2%. Unusable types of response included incomplete questionnaires, questionnaires received after the cut-off date for data analysis, questionnaires which were undeliverable by the U.S. Postal Service, and questionnaires which were not responded to or were unaccountable for some other reason such as being lost in the mail.

The Problem of Non-response

If every member of the sample had returned his or her completed questionnaire, it would have been relatively simple to draw inferences from sample findings about the population of boatowners. Table 1 shows, however, that about three-fifths of the questionnaires sent were returned in usable form. Thus, sample f indings actually describe only the sub-population of boatowners who would respond to such a questionnalre if they all received one. Before these findings can be legitimately generalized to the population of all boatowners, it is necessary

Table 1: Survey Questionnaire Response

Type of Response	Number	Percent
Usable Response	1165	58.2
Non-response		
Incomplete	41	2.1
Late	12	0.6
Non-deliverable	1.32	6.6
Not returned	650	32.5
Total Non-Response	835	41.8
Total	2000	100.0

to test the assumption that fishing habits of respondents are the same as those of sample members who did not complete usable questionnalres.

To test this assumption, a sample of 105 non-respondents was contacted by telephone and questioned concerning their fishing use of their boats. These telephone interviews did not obtain the complete information sought in the mail questionnalre, but they did identify the extent of participation in basic types of fishing by non-respondents.

Results of the telephone interviews indicated that findings based on the completed questionnaires were indeed biased towards saltwater fishing participation (Table 2). Non-respondents were more likely than respondents to have sold their boat, stopped using it, or spent more of their time fishing in freshwater. However, no significant difference was found in comparing frequency of fishing participation between
respondents and non-respondents. The non-response bias found is understandable when one considers that the questionnaire dealt mainly with saltwater fishing and therefore was probably of less interest to nonfishermen or freshwater fishermen. This bias does, however, call attention to the fact that generalizing from sample findings directly to the boatowner population would result in overestimates of saltwater fishing participation.

This bias was corrected by weighting findings relative to respondents and non-respondents according to their respective proportions of the total sample. The number of non-respondents in each fishing category was obtained by multiplying the number of non-respondents in the sample (835) times the percentages found in the telephone survey of 105 non-respondents. The resultant weighted sample totals shown in Table 2 represent the best estimates of saltwater fishing participation available from the survey.

Table 2: Saltwater Boat Fishing Participation by Survey Respondents and Non-respondents

Type of Saltwater Fishing	Respondents		Neighted Non-Respondents	Sample total Percent	Number
	Number	Percent	Number		

*Derived from telephone interviews with 105 non-respondents.

To obtain a total picture of saltwater boat fishfng, it was necessary to extrapolate the weighted sample findings to the population of all boatowners within the region. The sample size of 2,000 out of a population size of 119,802 represents a sampling fraction of .0166942 . Dividing this sampling ratio into sample frequencies yields estimates of frequencies for the entire population of boatowners. Thus, for example, 609 bay fishermen in the sample of 2,000 boatowners can be extrapolated to yield 36,480 bay fishermen in the population of 119,802 boatowners. Similarly, estimates of participation in other categories of fishing can be calculated for the population.

It is important to recognize that, while such extrapolations are the best population estimates available from the data, they are nonetheless estimates which are subject to error. Slightly different estimates would probably be obtained if the survey were applied to a different sample or the complete census of boatowners. Such variation is inherent and occurs by chance in any sample survey. This sampling error is minimized, however, as sample size is increased. Because the estimates of the number of participants in each category of fishing are based on a sample size of 2,000 , it can be said with 95% confidence that the true percentage of boatowners in the population in each category lies within 2 percentage points above or below the estimates given. Estimates of the expenditures by bay and offshore fishermen will be considerably less accurate than this because they will be based on smaller sample sizes composed of the bay fishermen and offshore fishermen subgroups of the sample.

Saltwater Fishing Patterns

About 31 percent of the 119,802 boats in the population were used for saltwater fishfng in Galveston Bay or adjacent offohore waters during the study year. Table 3 presents a classification of these saltwater fishing boats into mutually exclusive groups based on where they were used for saltwater fishing. For this study, bay fishing was defined as any fishing taking place inland from the jettied entrance to Galveston Bay, and offshore fishing included all fishing occurring on the open Gulf outside the Galveston jetties (Figure 2).

Bay fishing is clearly the dominant fom of saltwater fishing in the study area. Nearly all of the saltwater fishermen fished in the bays. Even among those boatowners who did fish offshore, a large majority fished the bay as well.

Table 3: Number of Boats in the Population Used for Various Types of Saltwater Fishing

Type of Saltwater Fishing	Number of Boats
Bay and offshore	31,987
Offshore	Total

FIGURE 2: MAP OF THE GALVESTON BAY SYSTEM

Seasonality of saltwater boat fishing is shown in Table 4 . There was very little difference in seasonal use patterns between bay and offshore fishermen. In both cases nearly all participants fished during the summer and more than four-fifths fished during spring and fall, while less than half fished during winter. Inspection of individual seasonal fishing records revealed that 35 percent of the saltwater fishermen fished during all four seasons and 38 percent fished during three seasons (almost always spring, summer and fall). Twenty-three percent fished during just two seasons (usually summer and spring or fall) and the remaining 4 percent fished during the summer exclusively.

Table 4: Seasonality of Saltwater Boat Fishing		
Season	Percent of Bay Fishermen	Percent of Offshore Fishermen
Winter	39	47
Spring	85	84
Sunmer	94	97
Fall	85	82

Table 5 provides the distribution of frequency of participation by saltwater boat fishermen. Bay fishermen tended to boat fish more often than offshore fishermen, with the mean number of days spent bay fishing about 50 percent higher than the mean number of days spent offshore fishing.

To place saltwater boat fishing in some perspective, it was useful to classify the saltwater boat fishermen according to what other types of fishing they did. As shown in Table 6, bay and offshore fishermen
were similar in their fishing participation patterns. Only about onethird limited their fishing participation to boat fishing, while the other two-thirds indicated they also fished fron shore or other fishing platforms. Similarly, about one-third limited their fishing to saltwater enviroments, with two-thirds indicating they fished in freshwater as well.

Table 5: Frequency of Participation in Saltwater Boat Fishing

Number of Days Fished During Year	Percent of Bay Fishermen	Percent of Offshore Fishermen
$1-5$	29.3	49.2
$6-10$	22.0	19.7
$11-15$	16.3	9.8
$16-20$	19.3	4.9
>20	99.9	16.4
	$\bar{x}=15.4$	$\bar{x}=100.0$

Type of Fishing	Percent of Bay Fishermen	Percent of Offshore Fishermen
Boat Fishing Only	31.4	35.7
Boat and Shore Fishing	68.6	64.3
Saltwater Fishing Only	32.5	35.7
Saltwater and Freshwater Fishing	67.5	64.3

It is important to recognize that other people besides the boatowners typically were also included in saltwater boat fishing trips. Table 7 illugtrates that offshore fishfng parties tended to be larger than bay fishing parties.

Finally, the duration of saltwater boat fishing trips is illustrated in Table 8 . Offshore fishing days generally entailed more hours of actual fishing time than bay fishing days, but it is noteworthy that a majority of both types of saltwater fishemen reported fishing times of 5 to 8 hours.

Number of People in Fishing Party	Percent of Bay Fishermen	Percent of Offshore Fishermen
1	1.3	1.5
2	25.2	16.7
3	37.4	21.2
4	23.1	30.3
5	10.1	21.2
>5	2.9	9.1
	100.0	100.0
	$\bar{x}=3.26$	$\bar{x}=3.86$

While the fishing patterns illustrated in Tables 3 through 8 provide an interesting description of saltwater boat fishing and fishermen, this information may be most useful in conjunction with the fishing expenditure data presented in the following section. Party expenditures, for example, could be converted to average costs per person by using the
figures given in Table 7.

Table 8: Duration of Saltwater Boat Fishing Days

Number of Hours in Typical Fishing Day	Percent of Bay Fishermen	Percent of Offshore Fishermen
$1-4$	24.5	
$5-8$	62.5	15.9
$9-12$	12.0	62.3
>12	$\bar{x}=6.2$	1.0

Boat Fishermen Expenditures

Several important factors were considered in measuring boat fishermen expenditures and assessing the resultant economic impacts. First, expenditures were measured on an annual and per-trip basis to reflect the frequency with which different items are typically purchased. Next, the types of businesses affected were idencified and their products categorized into groups or items. Typical expenditures include items such as bait and tackle, which are directly related to fishing, and products like ice and snack foods, which are not necessarily associated with fishing but are frequently purchased by fishermen.

Another matter of consideration was the location where spending takes place. From a state or regional perspective, it is of little importance whether expenditures are made at home, in local communities,
or en route to the fishing destination. On the other hand, from the perspective of the bayshore or coastal communities, it is imperative to know how much is spent in their area.

Finally, fishing participation was divided into bay and offshore use, and expenditures were measured separately for each type of Eishing. This permitted comparison of expenditure patterns and made an assess ment of each group's economic contribution possible.

Per Trip Expenditures

Certain items, because they are consumed during the course of the day, must be purchased every time a party decides to go boat fishing. For instance, bait, tackle, and fuel are generally needed every time a boat party fishes. Food, ice, and lodging are not always necessary, but are often desired by fishermen.

Some items, like food or tackle, may be purchased by some members of a fishing party and not by others. In contrast, gasoline and bait are examples of items which are used by the entire party but may be purchased by only one member. To account for possible differences in individual purchases among party members, respondents were asked to estimate expenditures on a per-party basis.

Table 9 illustrates spending patterns for each category of per-trip expenditures for bay and offshore fishermen. Because "trip" is an ambiguous tite unit, expenditure measures were standardized on a per-day basis. The proportion of parties who purcbased each item category was relatively consistent for bay and offshore fishermen. Almost all parties bought bait, snacks, and fuel for their boat, and most parties
also bought ice. A smaller number of bay and offshore fishing parties also made daily purchases of tackle and equipment, and paid launch or boat slip fees. Eating in restaurants typically was included in the expenditure records of only about one-fourth of the bay fishing parties and one-third of the offshore fishing parties. Very few of the respondents indicated expenditures for lodging, a finding that can probably be explained by the fact that all boaters sampled lived within a twohour drive from the coast.

Figure 3 shows a breakdown of the party expenditures for a typical day of bay and offshore fishing. The amounts shown are artificial in the sense that they are averages based on all bay and of fshore fishermen, rather than just those who incurred each expense category as in Tabie 9. The diagrams are useful because they indicate the distribution of expenditures for saltwater boat fishing among the various business sectors, and they indicate the average total expense for bay and offshore fishing trips. In addition, costs for transportation to and from the fighing site have been fncluded in Figure 3 . Transportation expense was estimated by multiplying round trip travel distance reported by respondents by $\$.18$ per mile, the personal mileage allowance used by the Texas A\&M physical plant during the study pertod.

The average bay fishing party spent nearly $\$ 50.00$ per fishing day while the average offshore party spent nearly $\$ 80.00$. The most costly item for bay fishing parties was land transportation to and from the bay, which amounted to fust over twelve dollars per trip. Gas and oil for boat use, at $\$ 25.82$ per party, or $1 / 3$ the total cost, was the highest per-trip expense incurred by the average offshore fishing party.
FIGURE 3: AVERAGE DAILY PARTY EXPENDITURES FOR SALTWATER BOAT FISHING TRI=S

[^0]
AVERAGE EXPENDITURES OF TYPICAL
BAY FISHING TRIP

	Bay Fishing		Offshore Fishing	
Expenditure Category	\% of Parties Who Purchased Each Item	Average Expense by Parties Who Purchased Each Item*	\% of Parties Who Purchased Each Item	Average Expense by Parties Who Purchased Each Item*
Bait	92	\$ 7.70	89	\$ 9.37
Ice	80	2.10	88	4.44
Snack Foods \& Beverages	92	9.19	90	12.83
Restaurants	24	12.29	35	13.61
Tackle $\begin{gathered}\text { or }\end{gathered}$ Equipment	61	7.39	65	9.19
Gas \& 011 For Boat	95	10.84	97	26.63
Launch Fees or Boat Slips	62	2.81	56	3.65
Lodging	3	17.19	5	18.00
Other	2	12.00	--	--

*Average category expenses are not additive because different nutabers of parties purchased each category.

This can be expected because of the relatively long distances (averm aging about 20 miles) traveled by offshore fishing boats (Ditton and Graefe, 1978). When combined, fuel for anto and boat use accounted for slightly over half (53\%) of the party expenditures for a typical offshore fishing trip. Similarly, transportation and boat fuel costs amounted to 45%, or just under half, of the total expense for bay fishing parties.

The snack foods and beverages category was the next highest, with about eight dollars being spent by the average bay party and twelve dollars by the average offshore party. Bait and tackle, goods directly relating to fishing, accounted for only 23% and 18% of the total expenditures for bay and offshore parties, respectively. The low expenditure averages for restaurants and lodging reflect the fact that relatively few parties incurred expenses for these items (Table 9). Although offshore fishing parties spent, on the average, nearly twice as much per day as bay fishing parties, their total spending on the whole was much less because they were fewer in number and they generally made fewer fishing trips. Bay fishing parties fished on average of 15.4 days during the year and offshore parties averaged 10.7 offshore fishing days. Table 10 shows the total yearly expenditures, by categories, for the population of bay and offshore fishermen. Values given in Table 10 are weighted averages which take into account variation in frequency of fishing and amounts spent per day, rather than being simply the result of multiplying average values for fishing frequency and amount spent.

All totaled, saltwater boat fishermen spent over 31 million dollars for their fishing trips in 1978. In sumary, the highest categories were fuel-related transportation and boat costs, which combined, amounted to nearly half of all expenditures. Snack foods and beverages was the next nighest expense category followed by bait and then tackle and equipment. Again, the small totals given for restaurant and lodging further demonstrate the low demand for these services by this regional fishing population.

Impacts to Local Areas

Benefits to bayshore and coastal commuities are realized to the extent that these areas receive money from non-local fishermen. Expenditures by non-local residents result in import consumption of local goods and services. What is spent in bayshore and coastal communities by non-local residents becomes, in effect, new money to the local economies. Conversely, similar expenditures by local residents cannot be considered new money, as the money was likely previously spent in
other sectors of the local commerce.
Thus, we need to identify non-local fishermen and determine thefr spending contributions to the local bayshore and coastal communities. For the purposes of this study, bayshore and coastal comunities were defined as those towns or cities located adjacent to the bay or gulf. All those not living in a town or city adjacent to the bay or gulf were considered non-local residents. In the sample, it was found that 81 percent of each category (bay and offshore fishermen) were not local residents, while 19 percent of each category did reside in local bayshore or coastal communties. Table 11 presents the yearly per-trip expenditures for saltwater boat fishing by local and non-local residents.

Because waterfront communties provided boat access to the bay and gulf, it was felt that they would be the most likely communities to receive on-site expenditures. Of course, not all the money spent by non-local flshermen was in local communities. Some was spent at home in preparation, sone en route to the fishing destination, and some in a bayshore or coastal community. Table 12 shows location of expenditures for non-local bay and offshore fishermen.

These figures suggest that offshore fishermen are likely to spend a higher portion of their money (54\%) in local commonities than bay fishermen (45\%). However, as a group, bay fishermen contributed nearly four times as much money to the local economies as offshore fishermen.

The expenditures most frequently made in local areas were for bait, Ice, restaurants, lodging, and launch fees. Nearly half the gas and oil for boat use was purchased in local comaninities. No attempt was made to determine where fishermen purchased gasoline for their automobiles.

Expense Category	Bay Fishing		Offshore Fishing	
	Local Residents	Non-local Residents	Local Residents	Non-local Residents
Bait	549	3,376	36	436
Ice	132	795	26	194
Snack Foods \& Beverages	686	3,845	134	569
Restaurants	175	901	30	395
Tackle \& Equipment	414	1,953	51	344
Gas \& Oil for Boat	1,011	4,575	190	1,486
Launch Fees or Boat Slips	87	847	25	100
Lodging	34	179	0	105
Other	14	122	0	0
Totals*	3,102	16,593	492	3,629

*Totals do not include costs for transportation because of the difficulty in determining where fishermen purchased fuel for their automobile.

| Table 12: |
| :--- | | Location of Total Datly Expenditures for Saltwater Boat |
| :--- |
| Fishing by Non-local Residents | (In Thousands of Dollars)

Thus, totals given in Table 12 underestimate the total local expenditures to the extent that non-local residents bought gasoline for their vehicles In local commuities. In addition, it should be remembered that these total expenses represent initial spending only, without accounting for respending effects.

It was not the goal of this gtudy to determine how much money was spent in each of the many bayshore and coastal commanties. Most boat owners indicated they launched their boats at several different commities throughout the year. Consequently, such information would have required a detailed inventory of expenditures made during each fishing trip. This kind of inventory can be accomplished through on-site interviews, as it is too cumbersome for a mail-out questionnaire.

Fishermen were asked, however, to list their most frequent launch or destination sites. Galveston, San Leon, Texas City, Morgan Point, San Luis Pass, and Baytown were among the most popular bayshore locathons listed as launch sites. Texas City, Galveston, and Freeport were the moent frequently listed launch or destination sites for offshore fishermen.

Total Contributions to State and Regional Economies

Gross expenditures, by themselves, are not an adequate indicator of the total economic impact of recreational boat fishing. Actually, direct expenditures are respent by the recipients in other sectors of the economy for goods and services needed to maintain their businesses. Some of this money is paid to local suppliers of goods and services, while some will "leak out" of the immediate area to finance fmports of
other goods and services. Some of the money remaining in the local area will again be respent; and likewise, a portion of this will go for locally provided goods and services and a portion will go For goods and services imported from other areas. This process will continue until all of the spending generated from the original expenditure is dissipated. Benefits to the local area, then, are derived from the sum of all spending for local goods and services (Devanney et al., 1976).

Such benefits can be analyzed by measuring the employment, income, tax revenues, or total output resulting from local spending (Research and Planning Consultants, 1978). In this study, recreational fishermen have been treated as a consumer group, and their direct economic importance has been assessed through their influence on gross sales or revenues to certain economic sectors (1.e., balt, tackle, food, etc.). Accordingly, their total economic impact can best be described by measuring the final output, or sales, resulting from the flows of expenditures between the many different economic sectors within the area.

An economic input/output model, which takes into account this flow of money, has been prepared for this region by the office of the Governor (Division of Planning and Coordination, 1972; Research and Planning Consultants, 1978). This model provides a multiplier which can be applied to the original gross expenditure figures to estimate the total economic impact to the region and state. In essence, the multiplier measures the total change in the economy's sales resulting from a dollar change in sales for a given product or sector.

The value of the multiplier varies depending upon the economic
sector impacted by fishermen expenditures. Some sectors generate more intra-regional or state spending than others; thus they would entail a higher multiplier. Also, statewide multipliers have a larger value simply because ft takes longer for money to leak out of the state than a region within the state. The multipllers derived for this particular study area are relatively large, however, because they reflect the influence of Houston. Being a strong conmercial and industrial center, Houston has a relatively self-contained regional economy and as a result more money should remain longer in the study area.

Multipliers were chosen for the appropriate economic sectors and applied to total per-trip expenditures to assess the economic contribution made by saltwater boat fishemen during 1978. Tables 13 and 14 present a summary of boat fishermen expenditures and their estimated economic impact on the stady region and the State of Texas as a whole. The total economic impact to the study region during 1978 was $\$ 79,751,000$. Economic activity throughout the entire state was increased by $\$ 107,966,000$. Bay fishemen contributed over four times as much as offshore fishermen to the state and regional economies. The major categories affected were fuel-related transportation and boat costs.

The purpose of this study was to measure expenditures by boat fishermen in the Eouston-Galveston Region and analyze their impact to state, regional, and local economies. This fmpact can be used as an Indicator of the benefits resulting from saltwater fishing.

Daily fishing expenditures were measured for both bay and offshore fishing. Offshore parties spend nearly twice as much per day on the average, but contribute about one-fifth as much as a group, because there were nearly ten times as many bay fishing trips taken during 1978. Altogether, saltwater boat fishermen spent $\$ 31,493,000$ during 620,118 fishing trips in 1978. Of this total, non-local fishermen spent $\$ 9,490,000$ in bayshore and coastal commities. Saltwater fishing expenditures resulted in a total economic impact of $\$ 79,751,000$ to the study area, or $\$ 107,966,000$ to the entire State of Texas. Because all of the boatowners sampled lived within the study area (by survey definition), this should not be misconstrued as export sales or new money to the region. Instead, this represents the total contributions in terms of final sales throughout all sectors of the regtonal and state economy, resulting from the initial spending for fishing-related goods and services by boat fishermen.

This study by no means presents the total economic influence of saltwater fishing in Texas. It focused on only one segment of the saltwater fishing population -- those who fished from boats. Undoubtedly, many more fished from the surf and piers, and surely their expenditures for fishing-related goods and services constitute important components in the local, regional, and state economes as well.

This study did not sample boatowners who resided outside of the Houston-Galveston study area. Hence, the contributions of non-resident fishermen and out-of-state tourists were not included. Although such fisherwen probably do only a small portion of the total saltwater fishing in this area, as noted in the methods section of this report, they probably spend more on the average than restdent fishermen, particularly in certain business sectors like restaurants and lodging.

This study also was limited to the extent that it only concerned one eight-county section of the coast. When the entire Texas coast is included, the total influence of recreational fishing expenditures will, of course, be much greater.

Several other factors need to be considered when assessing all the values and benefits associated with saltwater fishing. First, per-trip expendttures for fishing-related goods and services represent only a bare minimum of what fishermen would actually be willing to pay for the right to fish. Until now, this report only has considered fishing trip costs because these costs alone can be directly attributed to saltwater fishing in the study area. There are, however, many additional types of expenses fishermen make which could be attributed, in some degree, to saltwater boat fishing. The cost of the boat itself, for example, is a major expense boat fishermen incur periodically. This study found that about 31 percent of the boats in the region were used for saltwater fishing, and further that saltwater boat fishing accounted for about half of the use of these boats. These figures could be used to estimate a proportion of yearly boat sales attributable to bay and offshore boat fishing. Similarly, investments in other
supportive enterprises such as marinas and real estate developments should be recognized as an indirect benefit attributable, in part, to recreational fishing.

In addition to expenses incurred on each fishing trip, boatowners must make major cash outlays for equipment needed to fish bay and offshore areas. Rods, reels, and various boat accessories are generally more expensive, durable items, which may last for several seasons before being replaced. Nevertheless, in any given year a significant number of fishermen can be expected to purchase new equipment. These purchases, too, become an important component in the state and regional economies.

Respondents in this study were asked to estimate how much they spent during 1978 for four categories of durable goods: rods, reels, tackle, and other equipment accessories. Findings relative to these purchases have been presented in the Appendix rather than the main body of the report because of the difficulties in attributing these expenditures directly to saltwater boat fishing. It is important to emphasize that the figures given in the Appendix include only what was spent by the boatowners themselves. Data was not collected for similar equipment expenditures by other members of the fishing parties. Thus, if all boat fishermen were included, the total contributions of boat fishermen to equipment sales would be considerably larger. On the other hand, there may be sone concem as to whether all of the money spent for fishing equipment should be attributed to saltwater boat fishing. Actually, over half the boatowners indicated they also fished In saltwater from piers, and about two-thirds reported that they also fished in freshwater lakes and streams. Thus, it is reasonable to
assume that boatowners' fishing equipment would be used for all these types of fishing, and it follows that equipment expenditures recorded in 1978 could not be attributed solely to saltwater boat fishing.

In sumary, the figures obtained for yearly expenditures on durable fishing goods underestimate the impact of recreational boat fishing in the senge that only boatowners are represented, while they overestimate the impact to the extent that the goods are used for other purposes besides saltwater fishing, It is nonetheless interesting that these expenditures totalled nearly $\$ 7,000,000$ during 1978 , almost one-fourth of the total per-trip expenditures for the same year.

The results of this study pose some fmportant implications relative to the relationship between saltwater boat fishing and the state of the economy in general. The fact that nearly half of the per-trip expenditures were for fuel-related transportation and boat expenses points to a heavy dependence on gasoline. Inasmuch as gasoline prices have risen dramatically during recent years, it appears this dependence may be growing even stronger. Whether or not rising gasoline costs price boatowners out of the recreational fishing market remains to be seen. Not only will this be of concern to the boatowners themselves, but also to the businesses which benefit from their expenditures; for if participation decreases, total spending should decline accordingly.

Up until now, this report has dealt only with the beneficial impacts of saltwater boat fishing. Actually, recreational fishing often creates impacts which are costiy to local areas. Large numbers of fishermen can result in increased traffic congestion, excess wear and tear on roads and other facilities, and added demands on law enforcement and other
public services. This impact can be expected to be especially demanding on weekends and during summer months when boatowners reported they fished most heavily. Thus, it is important to consider these public costs along with the commercial benefits when analyzing the economic impact of recreational boat fishing.

REFERENCES

Breuer, J. P., R. L. Benefield, M. G. Weixelman, A. R. Martinez, and J. Nava. 1977. Survey of Finfish Harvest in Selected Texas Bays, Segment II. Coastal Fisheries Branch, Texas Parks and Wildife Department, 116 pp.

Daniel, Donnie L. 1974. A Survey of Sport Fishing Related Expenditures In a Selected Portion of the Mississippi Gulf Coast. Bureau of Business Research, University of Southern Mississippi, Hattiesburg, Mississippi, 22 pp.

Devanney, J. W., III, G. Ashe, and B. Parkhurst. 1976. Parable Beach: A Primer in Coastal Zone Economics. The MIT Press, Cambridge, Massachusetts, 99 pp.

Ditton, Robert B. and Alan R. Graefe. 1978. Recreational Fishing Use of Artificial Reefs on the Texas Coast. Contract (77-79) 0805. Prepared for the Texas Coastal and Marine Council, Austin, Texas, pp. 74-96.

Ditton, Robert B. and Richard N. Jarman. 1974. Development of a Sport Fishing Focus in the TAMU Sea Grant Program. Unpub1ished report presented to the Texas A\&M University Sea Grant Program, avallable from the author.

Ditton, Robert B., Richard N. Jarman and Steve A. Woods. 1978a. "An Analysis of the Charter Boat Fishing Industry on the Texas Gulf Coast." Marine Fisherles Review 40 (8): 1-7.

Ditton, Robert B., Thomas J. Mertens and Martin P. Schwartz. 1978 b . "Characteristics, Participation, and Motivations of Texas Charter Boat Fishermen." Marine Fisheries Review 40 (8): 8-13.

Division of Planning and Coordination, Office of the Govemor. 1972. Input-Output Model. Unpublished report. Austin, Texas.

Graefe, Alan R. and Robert B. Ditton. 1976. 'Recreational Shark Flighing on the Texas Gulf Coast: An Exploratory Study of Behavior and Attitudes." Marine Fisheries Review 38 (2): 10-20.

Heffeman, T. L., A. W. Green, L. W. McEachron, M. G. Weixelman, P. C. Hammerschmidt, and R. A. Harrington. 1975. Survey of Finfish Harvest in Selected Texas Bays. Texas Parks and Wildlife Department, Project No, 2-231-R-1. Austin, Texas, 115 pp.

Hlett, Robert and Jay Worrall. 1977. Marine Recreational Fishermen's Ability to Estimate Catch and to Recall Catch and Effort Over Time. Technical report HRS-RR-77/13-Ca submitted to National Marine Fisheries Service, Washington, D. C., 22 pp.

Hoffman, Robert G. and Hiroshi Yamauch: 1973. Impact of Recreational Fishing Expenditures on the State and Local Economies of Hawaif. Sea Grant Advisory Report AR-72-02, Unfversity of Hawaii, Honolulu, Hawail, 28 pp.

McConne11, Kenneth and Terrence Smith. 1978. Martne Recreational Fishing In Rhode Island. Unpublished Monthly Reports, FebruaryMay, available from the author.

North, Ronald M. 1976. "Economic Values for Marine Recreational Fisheries." In Marine Recreational Fisheries, Henry Clepper (ed.), Sport Fishing Institute, Washington, D. C., pp. 37-52.

Research and Planning Consultants. 1978. Texas Coastal Management Program, Social and Economic Component User's Manual. Technical report prepared for the Texas General Land office, September.

Skrabanek, R. L. and W. Kennedy Upham. 1974. The Population of Texas =
A Decade of Change. Texas A\&M University, Texas Agricultural
Experiment Station, College Station, Texas, 37 pp .
Threadgill, J. Randall. 1974. San Antonio - Lavaca Bay Recreation
Study. Texas Water Deve lopment Board, Economics Branch, 67 pp.
U. S. Department of Interior, Bureau of Sport Fisheries and Wildife.
1972. National Survey of Fishing and Hunting. U. S. Government

Printing Office, Washington, D. C., 108 pp.
Woods, Steve A. 1977. A Busfness Analysis of the Party Boat Industry
on the Texas Gulf Coast. Unpublished M.S. Thesis, Department of Management, Texas A\&M University, 103 pp.

APPENDIK

Annual Expenditures for Durable Fishing Equipment

Boatowners were asked to estimate how much they spent during 1978 for rods, reels, tackle, and other equipment or accessories. Table 15 shows how much the average boatowner spent for equipment during 1978, by type of saltwater fishing practiced. Those who fished offshore exclusively, averaged the most for each category and totaled $\$ 331 \mathrm{in}$ average equipment expenses during the year. Boatowners who fished both the bays and offshore spent less, on the average, than those who fished only offshore but more than those who fished only in the bays.

Table 15: Average Annual Expenditures, by Type of Fishermen, for Major Equipment Items

Item	Bay Only	Bay \& Offshore	Offshore Only
Reels	$\$ 37.04$	$\$ 62.66$	$\$ 91.43$
Rods	28.42	44.57	58.79
Tackle	31.60	44.00	54.64
Other Equipment or Accessories	73.65	87.64	126.15
Totals	$\$ 170.71$	$\$ 238.87$	$\$ 331.01$

The highest expense category for each type of fishing was "other equipment and accessories," which ranged from am average of $\$ 73.65$ for bay fishermen to $\$ 126.15$ for of fshore fishermen.

Expendyture amounts varied widely among respondents for all categories, with many boatowners spending large sums and many spending
nothing. Some indicated values well into the thousands of dollars for "other equipment and accessories," which suggested they reported purchases of boats or motors. Such a wide range of expenditures reflects the fact that most equipment lasts for several fishing seasons. The wide variation found also might suggest that some respondents included expenditures for certain items which other respondents did not include, since "other equipment and accessories" is essentially an open-ended category.

Table 16 shows total expenditures, by type of fishing, for major equipment iteas during 1978. Just as with per-trip expenditures, bay fishermen spend much more as a group because many more boatowners fish In the bays than in offshore areas.

Table 16: Total Annual Expenditures, by Type of Fishermen, for Major Equipment Items (In Thousands of Dollars)				
Item	Bay Only	Bay \& Offshore	$\begin{gathered} \text { Offehore } \\ \text { Only } \end{gathered}$	Total
Reels	\$1,185	\$ 282	\$ 88	\$1,555
Rods	909	200	56	1,165
Tackle	1,011	198	52	1,261
Other Equipment or Accessories	2,356	394	121	2,871
Totals	\$5,461	\$1,074	\$317	\$6,852

[^0]: TOTAL EXPENSE $\$ 79.20$
 AVERAGE EXPENDITURES OF TYP GAL

